Nickel phosphides are of particular interest because they are highly active and stable catalysts for petroleum/biorefinery and hydrogen production. Despite their significant catalytic potential, synthesizing various phase-pure nickel phosphide nanoparticles of uniform size remains a challenge. In this work, we develop a robust trioctylphosphine (TOP)-mediated route to make highly uniform phase-pure Ni12P5, Ni2P, and Ni5P4 nanoparticles. The synthetic route forms amorphous Ni70P30 nanoparticle intermediates. The reactions can be stopped at the amorphous stage when amorphous particles are desired. The amount of P incorporation can be controlled by varying the ratio of TOP to Ni(II). The mechanism for composition control involves the competition of the kinetics of two processes: the addition of the reduced Ni and the incorporation of P into Ni. Uniform Ni70P30 amorphous nanoparticles can be generated at a high TOP-to-Ni(II) ratio, where the P incorporation kinetics is made to dominate. Ni70P30 can later be transformed into phase-pure Ni12P5, Ni2P, and Ni5P4 nanocrystals of uniform size. The transformation can be controlled precisely by modulating the temperature. A UV-vis study coupled with theoretical modeling reveals Ni(0)-TOPx complexes along the synthetic path. This approach may be expanded to create other metal compounds, potentially enabling the synthesis of uniform nanoparticles of a greater variety.