Inflammation is an essential cytokine-mediated process for generating a neutralizing immune response against pathogens and is generally protective. However, aberrant or excessive production of pro-inflammatory cytokines is associated with uncontrolled local and systemic inflammation, resulting in cell death and often irreversible tissue damage. Uncontrolled inflammation can manifest over timescales spanning hours to years and is primarily dependent on the triggering event. Rapid and potentially lethal increase in cytokine production, or a 'cytokine storm,' develops in hours to days and is associated with cancer cell-based immunotherapies, such as CAR-T cell therapy. On the other hand, some bacterial and viral infections with high microbial replication or highly potent antigens elicit immune responses that result in supraphysiological systemic cytokine concentrations which manifest over days to weeks. Immune dysregulation in autoimmune diseases can lead to chronic cytokine-mediated tissue damage spanning months to years, which often occurs episodically. While the initiating events and cellular participants may differ in these disease processes, many of the cytokines that drive disease progression are shared. For example, upregulation of IL-1, IL-6, IFN-γ, TNF, and GM-CSF frequently coincides with cytokine storm, sepsis, and autoimmune disease. Targeted inhibition of these pro-inflammatory molecules via antagonist monoclonal antibodies has improved clinical outcomes, but the complexity of the underlying immune dysregulation results in high variability. Rather than a "one size fits all" treatment approach, an identification of disease endotypes may permit the development of effective therapeutic strategies that address the contributors of disease progression. Here, we present a literature review of the cytokine-associated etiology of acute and chronic cytokine-mediated tissue damage, describe successes and challenges in developing clinical treatments, and highlight advancements in preclinical therapeutic strategies for mitigating pathological cytokine production.