- Saaristo, Minna;
- Brodin, Tomas;
- Balshine, Sigal;
- Bertram, Michael G;
- Brooks, Bryan W;
- Ehlman, Sean M;
- McCallum, Erin S;
- Sih, Andrew;
- Sundin, Josefin;
- Wong, Bob BM;
- Arnold, Kathryn E
Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments.