The hereditary human disease ataxia-telangiectasia (AT) is characterized by phenotypic complexity at the cellular level. We show that multiple mutant phenotypes of immortalized AT cells from genetic complementation group D (AT-D) are corrected after the introduction of a single human chromosome from a human-mouse hybrid line by microcell-mediated chromosome transfer. This chromosome is cytogenetically abnormal. It consists primarily of human chromosome 18, but it carries translocated material from the region 11q22-23, where one or more AT genes have been previously mapped by linkage analysis. A cytogenetically normal human chromosome 18 does not complement AT-D cells after microcell-mediated transfer, whereas a normal human chromosome 11 does. We conclude that the AT-D gene is located on chromosome 11q22-23.