To date, only the five most posterior groups of Hox genes, Hox9-Hox13, have demonstrated loss-of-function roles in limb patterning. Individual paralog groups control proximodistal patterning of the limb skeletal elements. Hox9 genes also initiate the onset of Hand2 expression in the posterior forelimb compartment, and collectively, the posterior HoxA/D genes maintain posterior Sonic Hedgehog (Shh) expression. Here we show that an anterior Hox paralog group, Hox5, is required for forelimb anterior patterning. Deletion of all three Hox5 genes (Hoxa5, Hoxb5, and Hoxc5) leads to anterior forelimb defects resulting from derepression of Shh expression. The phenotype requires the loss of all three Hox5 genes, demonstrating the high level of redundancy in this Hox paralogous group. Further analyses reveal that Hox5 interacts with promyelocytic leukemia zinc finger biochemically and genetically to restrict Shh expression. These findings, along with previous reports showing that point mutations in the Shh limb enhancer lead to similar anterior limb defects, highlight the importance of Shh repression for proper patterning of the vertebrate limb.