Although optimizing decisions between drives to avoid pain and to obtain reward are critical for survival, understanding the neuronal circuit activity that regulates choice during approach-avoidance conflicts is limited. Here, we recorded neuronal activity in the infralimbic (IL) cortex and nucleus accumbens (NAc) during an approach-avoidance task. In this task, disruption of approach by a pain-predictive cue (PPC-avoidance) is extinguished by experience and reinstated in a model of chronic pain. In the IL-NAc circuit, the activity of distinct subpopulations of neurons predicts the extent of PPC-avoidance observed. Furthermore, chemogenetic and optogenetic manipulations establish that IL-NAc circuitry regulates PPC-avoidance behavior. Our results indicate that IL-NAc circuitry is engaged during approach-avoidance conflicts, and modifications of this circuit by experience and chronic pain determine whether approach or avoidance occurs.