Abstract Genetic manipulation of malaria parasites remains an inefficient, time-consuming and resource-intensive process. Presented here is a set of methods for 96-well plate-based transfection and culture that improve the efficiency of genetic manipulation of Plasmodium falciparum. Compared to standard protocols plate-based transfection requires 20-fold less DNA, transient transfection efficiency achieved is approximately seven-fold higher, whilst stable transfection success rate is above 90%. Furthermore the utility of this set of protocols to generate a knockout of the PfRH3 pseudogene, screened by whole-cell PCR, is demonstrated. The methods and tools presented here will facilitate genome-scale genetic manipulation of P. falciparum.