Importance
Disrupted autonomic nervous system functioning as measured by heart rate variability (HRV) has been associated with posttraumatic stress disorder (PTSD). It is not clear, however, whether reduced HRV before trauma exposure contributes to the risk for development of PTSD.Objective
To examine whether HRV before combat deployment is associated with increased risk of a PTSD diagnosis after deployment when accounting for deployment-related combat exposure.Design, setting, and participants
Between July 14, 2008, and May 24, 2012, active-duty Marines were assessed 1 to 2 months before a combat deployment and again 4 to 6 months after their return. The first phase of the Marine Resiliency Study (MRS-I) included 1415 male Marines, 59 of whom developed PTSD after deployment. Participants in the second phase of the Marine Resiliency Study (MRS-II) included 745 male Marines, 25 of whom developed PTSD after deployment. Analysis was conducted from November 25, 2013, to April 16, 2015.Main outcomes and measures
Predeployment HRV was measured via finger photoplethysmography during a 5-minute period of rest. Frequency-domain measures of HRV were generated. Diagnosis of PTSD was determined using the Clinician-Administered PTSD Scale.Results
After accounting for deployment-related combat exposure, lower HRV before deployment as measured by an increased low-frequency (LF) to high-frequency (HF) ratio of HRV was associated with risk of PTSD diagnosis after deployment (combined MRS-I and MRS-II cohort meta-analysis odds ratio, 1.47; 95% CI, 1.10-1.98; P = .01). The prevalence of postdeployment PTSD was higher in participants with high predeployment LF:HF ratios (15.8% [6 of 38 participants]) compared with participants who did not have high LF:HF ratios (3.7% [78 of 2122 participants]).Conclusions and relevance
This prospective longitudinal study provides initial and modest evidence that an altered state of autonomic nervous system functioning contributes to PTSD vulnerability, taking into account other key risk factors. If these findings are replicated, interventions that change autonomic nervous system function may open novel opportunities for prevention and treatment of PTSD.