Atonal Homolog 8 (Atoh8) is a basic helix-loop-helix (bHLH) transcription factor that is highly conserved across species and expressed in multiple tissues during embryogenesis. In the developing pancreas, Atoh8 is expressed in endocrine progenitors but declines in hormone-positive cells, suggesting a role during early stages of the endocrine differentiation program. We previously generated a whole-body Atoh8 knockout but early lethality of null embryos precluded assessment of Atoh8 functions during organ development. Here we report the generation of a conditional Atoh8 knockout mouse strain by insertion of two loxP sites flanking exon 1 of the Atoh8 gene. Pancreas-specific Atoh8 knockout (Atoh8 Δpanc) mice were obtained by mating this strain with a Pdx1-Cre transgenic line. Atoh8 Δpanc mice were born at the expected mendelian ratio and showed normal appearance and fertility. Pancreas weight and gross pancreatic morphology were normal. All pancreatic cell lineages were present, although endocrine δ (somatostatin) cells were modestly augmented in Atoh8 Δpanc as compared to control neonates. This increase did not affect whole-body glucose tolerance in adult knockout animals. Gene expression analysis in embryonic pancreases at the time of the major endocrine differentiation wave revealed modest alterations in several early endocrine differentiation markers. Together, these data argue that Atoh8 modulates activation of the endocrine program but it is not essential for pancreas formation or endocrine differentiation in the mouse. Given the ubiquitous expression pattern of Atoh8, the availability of a mouse strain carrying a conditional allele for this gene warrants further studies using temporally regulated Cre transgenic lines to elucidate time or cell-autonomous functions of Atoh8 during development and in the adult.