Suppose $K$ is a knot in $S^3$ with bridge number $n$ and bridge distance greater
than $2n$. We show that there are at most ${2n\choose n}$ distinct minimal genus Heegaard
splittings of $S^3\setminus\eta(K)$. These splittings can be divided into two families. Two
splittings from the same family become equivalent after at most one stabilization. If $K$
has bridge distance at least $4n$, then two splittings from different families become
equivalent only after $n-1$ stabilizations. Further, we construct representatives of the
isotopy classes of the minimal tunnel systems for $K$ corresponding to these Heegaard
surfaces.