We have previously demonstrated lactational transfer of T cell-based immunity from dam to foster pup. In the short term, a significant part of transferred immunity is passive cellular immunity. However, as time progresses, this is replaced by what we have described as maternal educational immunity such that by young adulthood, all immune cells responding to a foster dam immunogen are the product of the foster pup's thymus. To reduce confounding factors, this original demonstration used congenic/syngeneic dam and foster pup pairs. In this study, we investigated lactational transfer of immunity to Mycobacterium tuberculosis in MHC class I-mismatched animals, as well as from Th1-biased dams to Th2-biased foster pups. Using immunized C57BL/6J dams, lactational transfer to nonimmunized BALB/cJ foster pups resulted in much greater immunity than direct immunization in 5-wk-old pups (ex vivo assay of pup splenocytes). At this age, 82% of immunogen-responding cells in the pup spleen were produced through maternal educational immunity. FVB/NJ nonimmunized foster recipients had a greater number of maternal cells in the spleen and thymus but a much larger percentage was Foxp3+, resulting in equivalent immunity to direct immunization. Depletion of maternal Foxp3+ cells from pup splenocytes illustrated a substantial role for lactationally transferred dam regulatory T cells in suppression of the ex vivo response in FVB/NJ, but not BALB/cJ, recipients. We conclude that lactational transfer of immunity can cross MHC class I barriers and that Th1 immunity can be imparted to Th2-biased offspring; in some instances, it can be greater than that achieved by direct immunization.