We produce precise chiral-edge graphene nanoribbons on Cu{111} using self-assembly and surface-directed chemical reactions. We show that, using specific properties of the substrate, we can change the edge conformation of the nanoribbons, segregate their adsorption chiralities, and restrict their growth directions at low surface coverage. By elucidating the molecular-assembly mechanism, we demonstrate that our method constitutes an alternative bottom-up strategy toward synthesizing defect-free zigzag-edge graphene nanoribbons.