The effectiveness of larval behavior in regulating transport between well-mixed, low-inflow estuaries and coastal waters in seasonally arid climates is poorly known. We determined the flux of an assemblage of benthic crustacean larvae relative to physical conditions between a shallow estuary and coastal waters on the upwelling coast of northern California (38°18′N, 123°03′W) from 29 to 31 March 2006. We detected larval behaviors that regulate transport in adjacent coastal waters and other estuaries for only two taxa in the low-inflow estuary, but they were apparent for taxa outside the estuary. Vertical mixing in the shallow estuary may have overwhelmed larvae of some species, or salinity fluctuations may have been too slight to cue tidal vertical migrations. Nevertheless, all larval stages of species that complete development in nearshore coastal waters were present in the estuary, because they remained low in the water column reducing seaward advection or they were readily exchanged between the estuary and open coast by tidal flows. Weak tidal flows and gravitational circulation at the head of the estuary reduced seaward transport during development for species that completed development nearshore, whereas larval release during nocturnal ebb tides enhanced seaward transport for species that develop offshore. Thus, nonselective tidal processes dominated larval transport for most species back and forth between the low-inflow estuary and open coastal waters, whereas in adjacent open coastal waters, larval behavior in the presence of wind-induced shear was more important in regulating migrations between adult and larval habitats along this upwelling coast. © 2014 Coastal and Estuarine Research Federation.