Due to the advancements in cellular technologies and the dense deployment of
cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the
fifth-generation (5G) and beyond cellular networks is a promising solution to
achieve safe UAV operation as well as enabling diversified applications with
mission-specific payload data delivery. In particular, 5G networks need to
support three typical usage scenarios, namely, enhanced mobile broadband
(eMBB), ultra-reliable low-latency communications (URLLC), and massive
machine-type communications (mMTC). On the one hand, UAVs can be leveraged as
cost-effective aerial platforms to provide ground users with enhanced
communication services by exploiting their high cruising altitude and
controllable maneuverability in three-dimensional (3D) space. On the other
hand, providing such communication services simultaneously for both UAV and
ground users poses new challenges due to the need for ubiquitous 3D signal
coverage as well as the strong air-ground network interference. Besides the
requirement of high-performance wireless communications, the ability to support
effective and efficient sensing as well as network intelligence is also
essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting
aerial and ground users. In this paper, we provide a comprehensive overview of
the latest research efforts on integrating UAVs into cellular networks, with an
emphasis on how to exploit advanced techniques (e.g., intelligent reflecting
surface, short packet transmission, energy harvesting, joint communication and
radar sensing, and edge intelligence) to meet the diversified service
requirements of next-generation wireless systems. Moreover, we highlight
important directions for further investigation in future work.