BACKGROUND:The domestic cat (Felis catus) is an important companion animal and is used as a large animal model for human disease. However, the comprehensive study of adaptive immunity in this species is hampered by the lack of data on lymphocyte antigen receptor genes and usage. The objectives of this study were to annotate the feline T cell receptor (TR) loci and to characterize the expressed repertoire in lymphoid organs of normal cats using high-throughput sequencing. RESULTS:The Felis catus TRG locus contains 30 genes: 12 TRGV, 12 TRGJ and 6 TRGC, the TRB locus contains 48 genes: 33 TRBV, 2 TRBD, 11 TRBJ, 2 TRBC, the TRD locus contains 19 genes: 11 TRDV, 2 TRDD, 5 TRDJ, 1 TRDC, and the TRA locus contains 127 genes: 62 TRAV, 64 TRAJ, 1 TRAC. Functional feline V genes form monophyletic clades with their orthologs, and clustering of multimember subgroups frequently occurs in V genes located at the 5' end of TR loci. Recombination signal (RS) sequences of the heptamer and nonamer of functional V and J genes are highly conserved. Analysis of the TRG expressed repertoire showed preferential intra-cassette over inter-cassette rearrangements and dominant usage of the TRGV2-1 and TRGJ1-2 genes. The usage of TRBV genes showed minor bias but TRBJ genes of the second J-C-cluster were more commonly rearranged than TRBJ genes of the first cluster. The TRA/TRD V genes almost exclusively rearranged to J genes within their locus. The TRAV/TRAJ gene usage was relatively balanced while the TRD repertoire was dominated by TRDJ3. CONCLUSIONS:This is the first description of all TR loci in the cat. The genomic organization of feline TR loci was similar to that of previously described jawed vertebrates (gnathostomata) and is compatible with the birth-and-death model of evolution. The large-scale characterization of feline TR genes provides comprehensive baseline data on immune repertoires in healthy cats and will facilitate the development of improved reagents for the diagnosis of lymphoproliferative diseases in cats. In addition, these data might benefit studies using cats as a large animal model for human disease.