- IWABUCHI, MINAMI;
- NARITA, MIWAKO;
- UCHIYAMA, TAKAYOSHI;
- IWAYA, SHUNPEI;
- OIWA, ERI;
- NISHIZAWA, YOSHINORI;
- HASHIMOTO, SHIGEO;
- BONEHILL, AUDE;
- KASAHARA, NORIYUKI;
- TAKIZAWA, JUN;
- TAKAHASHI, MASUHIRO
The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8(+) T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3-4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8(+)/WT1 tetramer(+) T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3-4 weeks of culture and CD8(+)/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8(+) T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8(+) T cell culture. These CD8(+) T cells co-cultured with caTLR4-PMDC11 cells were demonstrated to secrete IFN-γ and to be cytotoxic to WT1-expressing target cells. These data suggested that the antigen-specific cytotoxic T lymphocyte (CTL)-inducing ability of PMDC11 was potentiated via transduction of the caTLR4 gene. The present study also suggested that caTLR4-PMDC11 cells may be applied as potent antigen-presenting cells for generating antigen-specific CTLs in adoptive cellular immunotherapy against tumors and severe viral infections.