The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focussed on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy ana-lyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimen-tary techniques helped to avoid possible pitfalls in interpre-tation. It was found that the ion energy distribution func-tions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be re-duced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum.
A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.
Cathodic arc plasmas are considered fully ionized and they contain multiply charged ions, yet, gaseous and metal neutrals can be present. It is shown that they can cause a significant reduction of the ion charge states as measured far from the cathode spots. Several cathode materials were used to study the evolution the mean ion charge state as a function of time after arc ignition. The type of cathode material, arc current amplitude, intentionally increased background gas, additional surfaces placed near the plasma flow, and other factors influence the degree of charge state reduction because all of these factors influence the density of neutrals. In all cases, it was found that the mean ion charge state follows an exponential decay of first order, Q(t) = A * exp(t/tau) + Qss, where A is a parameter describing the importance of the decay, tau is the characteristic decay time, and Qss is a steady-state value approached for continuous arc operation. The extrapolated values Q(t-->0) indicate surprisingly high mean charge states as produced at cathode spots and not "skewed" by charge exchange collisions with neutrals.
Vacuum arc ion sources, commonly also known as "Mevva" ion sources, are used to generate intense pulsed metal ion beams. It is known that the mean charge state of the ion beam lies between 1 and 4, depending on cathode material, arc current, arc pulse duration, presence or absence of magnetic field at the cathode, as well background gas pressure. A characteristic of the vacuum arc ion beam is a significant decrease in ion charge state throughout the pulse. This decrease can be observed up to a few milliseconds, until a "noisy" steady-state value is established. Since the extraction voltage is constant, a decrease in the ion charge state has a proportional impact on the average ion beam energy. This paper presents results of detailed investigations of the influence of arc parameters on the temporal development of the ion beam mean charge state for a wide range of cathode materials. It is shown that for fixed pulse duration, the charge state decrease can be reduced by lower arc current, higher pulse repetition rate, and reduction of the distance between cathode and extraction region. The latter effect may be associated with charge exchange processes in the discharge plasma.
A vacuum arc ion source was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The mesh had a geometric transmittance of 60 percent, which was taken into account as a correction factor. The ion current from twenty-two cathode materials was measured at an arc current of 100 A. The ion current normalized by the arc current was found to depend on the cathode material, with valuesin the range from 5 percent to 11 percent. The normalized ion current is generally greater for light elements than for heavy elements. The ion erosion rates were determined from values of ion currentand ion charge states, which were previously measured in the same experimental system. The ion erosion rates range from 12-94 mu g/C.
The total ion current generated by a vacuum arc plasma source was measured. The discharge system investigated allowed ion collection from the arc plasma streaming through a hemispherical mesh anode with geometric transparency of 72 percent. A range of different cathode materials was investigated, and the arc current was varied over the range 50-500 A. We find that the normalized ion current (Iion/Iarc) depends on the cathode material, with values in the range from 5 percent to 19 percent and generally greater for elements of low cohesive energy. The application of a strong axial magnetic field in the cathode and arc region leads to increased normalized ion current, but only by virtue of enhanced ion charge states formed in a strong magnetic field.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.