Background
Timely monitoring of SARS-CoV-2 variants is crucial to effectively managing both prevention and treatment efforts. In this paper, we aim to describe demographic and clinical patterns of individuals with COVID-19-like symptoms during the first three epidemic waves in Mexico to identify changes in those patterns that may reflect differences determined by virus variants.Methods
We conducted a descriptive analysis of a large database containing records for all individuals who sought care at the Mexican Social Security Institute (IMSS) due to COVID-19-like symptoms from March 2020 to October 2021 (4.48 million records). We described the clinical and demographic profile of individuals tested (3.38 million, 32% with PCR and 68% with rapid test) by test result (positives and negatives) and untested, and among those tested, and the changes in those profiles across the first three epidemic waves.Results
Individuals with COVID-19-like symptoms were older in the first wave and younger in the third one (the mean age for those positive was 46.6 in the first wave and 36.1 in the third wave; for negatives and not-tested, the mean age was 41 and 38.5 in the first wave and 34.3 and 33.5 in the third wave). As the pandemic progressed, an increasing number of individuals sought care for suspected COVID-19. The positivity rate decreased over time but remained well over the recommended 5%. The pattern of presenting symptoms changed over time, with some of those symptoms decreasing over time (dyspnea 40.6 to 14.0%, cough 80.4 to 76.2%, fever 77.5 to 65.2%, headache 80.3 to 78.5%), and some increasing (odynophagia 48.7 to 58.5%, rhinorrhea 28.6 to 47.5%, anosmia 11.8 to 23.2%, dysgeusia 11.2 to 23.2%).Conclusion
During epidemic surges, the general consensus was that any individual presenting with respiratory symptoms was a suspected COVID-19 case. However, symptoms and signs are dynamic, with clinical patterns changing not only with the evolution of the virus but also with demographic changes in the affected population. A better understanding of these changing patterns is needed to improve preparedness for future surges and pandemics.