- Hsieh, D;
- Xia, Y;
- Qian, D;
- Wray, L;
- Dil, JH;
- Meier, F;
- Patthey, L;
- Osterwalder, J;
- Fedorov, AV;
- Lin, H;
- Bansil, A;
- Grauer, D;
- Hor, YS;
- Cava, RJ;
- Hasan, MZ
Electron systems that possess light-like dispersion relations or the conical
Dirac spectrum, such as graphene and bismuth, have recently been shown to
harbor unusual collective states in high magnetic fields. Such states are
possible because their light-like electrons come in spin pairs that are
chiral,which means that their direction of propagation is tied to a quantity
called pseudospin that describes their location in the crystal lattice. An
emerging direction in quantum materials research is the manipulation of atomic
spin-orbit coupling to simulate the effect of a spin dependent magnetic
field,in attempt to realize novel spin phases of matter. This effect has been
proposed to realize systems consisting of unpaired Dirac cones that are
helical, meaning their direction of propagation is tied to the electron spin
itself, which are forbidden to exist in graphene or bismuth. The experimental
existence of topological order can not be determined without spin-resolved
measurements. Here we report a spin-and angle-resolved photoemission study of
the hexagonal surface of the Bi2Te3 and Bi{2-x}MnxTe3 series, which is found to
exhibit a single helical Dirac cone that is fully spin-polarized. Our
observations of a gap in the bulk spin-degenerate band and a spin-resolved
surface Dirac node close to the chemical potential show that the low energy
dynamics of Bi2Te3 is dominated by the unpaired spin-helical Dirac modes. Our
spin-texture measurements prove the existence of a rare topological phase in
this materials class for the first time, and suggest its suitability for novel
2D Dirac spin device applications beyond the chiral variety or traditional
graphene.