Liver fibrosis occurs as a wound-healing scar response following acute and chronic liver inflammation including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis B and C, and autoimmune hepatitis. Myofibroblasts, mainly transdifferentiated from hepatic stellate cells, are pivotal cell types that produce fibrillar collagen. The activation of inflammatory cells, including Kupffer cells, is a crucial step for activating hepatic stellate cells. Toll-like receptors (TLRs) are pattern recognition receptors that sense pathogen-associated molecular patterns (PAMPs), which discriminate the products of microorganisms from the host. TLRs are expressed on Kupffer cells, endothelial cells, dendritic cells, biliary epithelial cells, hepatic stellate cells, and hepatocytes in the liver. TLR signaling induces potent innate immune responses in these cell types. The liver is constantly exposed to PAMPs, such as LPS and bacterial DNA through bacterial translocation because there is a unique anatomical link, the portal vein system between liver and intestine. Recent evidence demonstrates the role of TLRs in the activation of hepatic immune cells and stellate cells during liver fibrosis. Moreover, crosstalk between TLR4 signaling and TGF-beta signaling in hepatic stellate cells has been reported. This paper highlights the role of TLR signaling in stellate cell activation and the progression of liver fibrosis.