We describe here some tests we made in the SAMPL5 communal event of 'Semi-Explicit Assembly' (SEA), a recent method for computing solvation free energies. We combined the prospective tests of SAMPL5 with followup retrospective calculations, to improve two technical aspects of the field variant of SEA. First, SEA uses an approximate analytical surface around the solute on which a water potential is computed. We have improved and simplified the mathematical model of that surface. Second, some of the solutes in SAMPL5 were large enough to need a way to treat solvating waters interacting with 'buried atoms', i.e. interior atoms of the solute. We improved SEA with a buried-atom correction. We also compare SEA to Thermodynamic Integration molecular dynamics simulations, so that we can sort out force field errors.