The reaction of 1 equiv of 1-azidoadamantane with [UIII(NR2)3] (R = SiMe3) in Et2O results in the formation of [UV(NR2)3(NAd)] (1, Ad = 1-adamantyl) in good yields. The electronic structure of 1, as well as those of the related U(V) complexes, [UV(NR2)3(NSiMe3)] (2) and [UV(NR2)3(O)] (3), were analyzed with EPR spectroscopy, SQUID magnetometry, NIR-visible spectroscopy, and crystal field modeling. This analysis revealed that, within this series of complexes, the steric bulk of the E2- (E═O, NR) ligand is the most important factor in determining the electronic structure. In particular, the increasing steric bulk of this ligand, on moving from O2- to [NAd]2-, results in increasing U═E distances and E-U-Namide angles. These changes have two principal effects on the resulting electronic structure: (1) the increasing U═E distances decreases the energy of the fσ orbital, which is primarily σ* with respect to the U═E bond, and (2) the increasing E-U-Namide angles increases the energy of fδ, due to increasing antibonding interactions with the amide ligands. As a result of the latter change, the electronic ground state for complexes 1 and 2 is primarily fφ in character, whereas the ground state for complex 3 is primarily fδ.