A growing evidence base suggests that complex healthcare problems are optimally tackled through cross-disciplinary collaboration that draws upon the expertise of diverse researchers. Yet, the influences and processes underlying effective teamwork among independent researchers are not well-understood, making it difficult to fully optimize the collaborative process. To address this gap in knowledge, we used the annual NIH mHealth Training Institutes as a testbed to develop stochastic actor-oriented models that explore the communicative interactions and psychological changes of its disciplinarily and geographically diverse participants. The models help investigate social influence and social selection effects to understand whether and how social network interactions influence perceptions of team psychological safety during the institute and how they may sway communications between participants. We found a degree of social selection effects: in particular years, scholars were likely to choose to communicate with those who had more dissimilar levels of psychological safety. We found evidence of social influence, in particular, from scholars with lower psychological safety levels and from scholars with reciprocated communications, although the sizes and directions of the social influences somewhat varied across years. The current study demonstrated the utility of stochastic actor-oriented models in understanding the team science process which can inform team science initiatives. The study results can contribute to theory-building about team science which acknowledges the importance of social influence and selection.