The World Health Organization and its partners are aiming to eliminate trachoma as a public health problem by 2020. In this study, we compare forecasts of TF prevalence in 2011 for 7 different statistical and mechanistic models across 9 de-identified trachoma endemic districts, representing 4 unique trachoma endemic countries. We forecast TF prevalence between 1-6 years ahead in time and compare the 7 different models to the observed 2011 data using a log-likelihood score. An SIS model, including a district-specific random effect for the district-specific transmission coefficient, had the highest log-likelihood score across all 9 districts and was therefore the best performing model. While overall the deterministic transmission model was the least well performing model, although it did comparably well to the other models for 8 of 9 districts. We perform a statistically rigorous comparison of the forecasting ability of a range of mathematical and statistical models across multiple endemic districts between 1 and 6 years ahead of the last collected TF prevalence data point in 2011, assessing results against surveillance data. This study is a step towards making statements about likelihood and time to elimination with regard to the WHO GET2020 goals.