This thesis investigates parallelism and hardware design trade-offs of parallel and pipelined architectures. To explore these trade-offs we developed a retargetable compiler based on a set of powerful code transformations called Percolation Scheduling (PS) that map programs with real-time constraints and/or massive time requirements onto synchronous, parallel, high-performance or semi-custom architectures.
High-performance is achieved through extraction of application inherent fine-grain parallelism and the use of a suitable architecture. Exploiting fine-grain parallelism is a critical part of exploiting all of the parallelism available in a given program, particularly since highly irregular forms of parallelism are often not visible at coarser levels and since the use of low-level parallelism has a multiplicative effect on the overall performance.
To extract substantial parallelism from both the hardware and the compiler, we use a clean, highly parallel VLIW-like architecture that is synchronous, has multiple functional units and has a single program counter. The use of a hazard-free and homogeneous architecture does not result only in a better VLSI design but also considerably increases the compiler's ability to produce better code. To further enhance parallelism we modified the uni-cycle VLIW model and extended the transformations such that pipelined units that provide extra parallelism are used.
Another approach presented is of resource constrained scheduling (RCS). Since the RCS problem is known to be NP-hard, in practice it may be solved only by a heuristic approach. We argue that using the heuristic after extraction of the unlimited-resources schedule may yield better results than if the heuristic has been applied at the beginning of the scheduling process.
Through a series of benchmarks we evaluate hardware design trade-offs and show that speed-ups on average of one order of magnitude are feasible with sufficient functional units. However, when resources are limited we show that the number of functional units needed may be optimized for a particular suite of application programs.