Improvements in operando spectroscopy have enabled the catalysis community to investigate the dynamic nature of catalysts under operating conditions with increasing detail. Still, the highly dynamic nature of some catalysts, such as fluxional supported subnano clusters, presents a formidable challenge even for the most state-of-the-art techniques. The reason is that such fluxional catalytic interfaces contain a variety of thermally accessible states. Operando spectroscopies used in catalysis generally fall into two categories: ensemble-based techniques, which provide spectra containing the signals of the entire ensemble of states of the catalyst and are not necessarily dominated by the most active species, and localized techniques, which provide atomistic-level information about the dynamics of active sites in a very small area, which might not include the most active species. Combining many different kinds of techniques can provide detailed insight; however, we propose that effective utilization of specific computational techniques and approaches within the fluxionality paradigm can fill the gap and enable atomistic characterization of the most relevant catalytic sites.