Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma fasciculatum to determine the effects of two fuel reduction types (prescribed fire and mastication) and three different seasons of treatment (fall, winter, and spring) on shrub cover, height, and seedling density. Exclosures (2.5 m2 each) were also used to assess herbivory effects. By the third post-treatment year, prescribed fire treatments had higher shrub cover (71 ± 2%) than mastication (43 ± 4%). There was no treatment effect on shrub height, species richness, or composition. Seedling density was initially higher in prescribed fire treatments (31 ± 4 seedlings m−2) than mastication (3 ± 0 seedlings m−2); however, prescribed fire treatments experienced substantial mortality, especially spring burning, resulting in lower densities 3 years after treatments (18 ± 0 seedlings m−2 after fall and winter fire compared to 2 ± 0 seedlings m−2 after spring fire). A. fasciculatum remained the dominant shrub species after the treatments, and Ceanothus cuneatus recruitment was higher in fall burning. Deer herbivory only affected shrub height, especially in masticated units, resulting in heights of 55 ± 2 cm in unexclosed areas compared to 66 ± 4 cm inside exclosures by the third post-treatment year. Overall, our findings suggest that fuel treatments play an important role in shrubland community dynamics, at least in the short-term, with implications for re-treatment frequency, community structure, and wildlife habitat.