Air pollution is a serious public health concern. Innovative and scalable methods for detecting harmful air pollutants such as PM2.5 are necessary. This study assessed the feasibility of using social media to monitor outdoor air pollution in an urban area by comparing data from Twitter and validating it against established air monitoring stations. Data were collected from London, England from July 29, 2016 to March 17, 2017. Daily mean PM2.5 data was downloaded from the LondonAir platform consisting of 26 air pollution monitoring sites throughout Greater London. Publicly available tweets geo-located to Greater London containing air pollution terms were captured from the Twitter platform. Tweets with media URL links were excluded to minimize influence of news stories. Sentiment of the tweets was examined as negative, positive, or neutral. Cross-correlation analyses were used to compare the relationship between trends of tweets about air pollution and levels of PM2.5 over time. There were 16,448 tweets without a media URL link, with a mean of 498.42 (SD = 491.08) tweets per week. A significant cross-correlation coefficient of 0.803 was observed between PM2.5 data and the non-media air pollution tweets (p < 0.001). The cross-correlation coefficient was highest between PM2.5 data and air pollution tweets with negative sentiment at 0.816 (p < 0.001). Discussions about air pollution on Twitter reflect particle PM2.5 pollution levels in Greater London. This study highlights that social media may offer a supplemental source to support the detection and monitoring of air pollution in a densely populated urban area.