Because the initial deposition pattern of inhaled particles of various toxic agents determines their future clearance and insult to tissue, respiratory tract deposition is important in assessing the potential toxicity of inhaled aerosols. Factors influencing the deposition of inhaled particles can be classified into three main areas: (1) the physics of aerosols, (2) the anatomy of the respiratory tract and (3) the airflow patterns in the lung airways. In the physics of aerosols, the forces acting on a particle and its physical and chemical properties, such as particle size or size distribution, density, shape, hygroscopic or hydrophobic character, and chemical reactions of the particle will affect the deposition. With respect to the anatomy of the respiratory tract, important parameters are the diameters, the lengths, and the branching angles of airway segments, which determine the deposition. Physiological factors include airflow and breathing patterns, which influence particle deposition. Various lung models used in predicting particle deposition are reviewed and discussed. The air-way structures of various animal species are compared, showing the unique structure of the human lung compared to the animal species under study. Regional deposition data in man and dog are reviewed. Recent deposition data for small rodents are presented, showing regional difference in deposition with the right apical lobe having the highest relative deposition.