- Swaminathan, Srividya;
- Huang, Chuanxin;
- Geng, Huimin;
- Chen, Zhengshan;
- Harvey, Richard;
- Kang, Huining;
- Ng, Carina;
- Titz, Björn;
- Hurtz, Christian;
- Sadiyah, Mohammed Firas;
- Nowak, Daniel;
- Thoennissen, Gabriela B;
- Rand, Vikki;
- Graeber, Thomas G;
- Koeffler, H Phillip;
- Carroll, William L;
- Willman, Cheryl L;
- Hall, Andrew G;
- Igarashi, Kazuhiko;
- Melnick, Ari;
- Müschen, Markus
The B cell-specific transcription factor BACH2 is required for affinity maturation of B cells. Here we show that Bach2-mediated activation of p53 is required for stringent elimination of pre-B cells that failed to productively rearrange immunoglobulin VH-DJH gene segments. After productive VH-DJH gene rearrangement, pre-B cell receptor signaling ends BACH2-mediated negative selection through B cell lymphoma 6 (BCL6)-mediated repression of p53. In patients with pre-B acute lymphoblastic leukemia, the BACH2-mediated checkpoint control is compromised by deletions, rare somatic mutations and loss of its upstream activator, PAX5. Low levels of BACH2 expression in these patients represent a strong independent predictor of poor clinical outcome. In this study, we demonstrate that Bach2(+/+) pre-B cells resist leukemic transformation by Myc through Bach2-dependent upregulation of p53 and do not initiate fatal leukemia in transplant-recipient mice. Chromatin immunoprecipitation sequencing and gene expression analyses carried out by us revealed that BACH2 competes with BCL6 for promoter binding and reverses BCL6-mediated repression of p53 and other cell cycle checkpoint-control genes. These findings identify BACH2 as a crucial mediator of negative selection at the pre-B cell receptor checkpoint and a safeguard against leukemogenesis.