Introduction: Because of their frequent contact with compromised patients, vaccination against influenza is recommended for all healthcare workers. Recent studies suggest that vaccination decreases influenza transmission to patients and reduces worker illness and absenteeism. However, few emergency medical services (EMS) agencies provide annual vaccination, and the vaccination rate among EMS personnel remains low. Reticence among EMS agencies to provide influenza vaccination to their employees may be due in part to the unknown fiscal consequences of implementing a vaccination program. In this study, we sought to estimate the cost effectiveness of an employer-provided influenza vaccination program for EMS personnel.
Methods: Using data from published reports on influenza vaccination, we developed a cost-effectiveness model of vaccination for a hypothesized EMS system of 100 employees. Model inputs included vaccination costs, vaccination rate, infection rate, costs associated with absenteeism, lost productivity due to working while ill (presenteeism), and medical care for treating illness. To assess the robustness of the model we performed a series of sensitivity analyses on the input variables.
Results: The proportion of employees contracting influenza or influenza-like illness (ILI) was estimated at 19% among vaccinated employees compared to 26% among non-vaccinated employees. The costs of the vaccine, consumables, and employee time for vaccination totaled $44.19 per vaccinated employee, with a total system cost of $4,419. Compared to no vaccination, a mandatory vaccination program would save $20,745 in lost productivity and medical costs, or $16,325 in net savings after accounting for vaccination costs. The savings were 3.7 times the cost of the vaccination program and were derived from avoided absenteeism ($7,988), avoided presenteeism productivity losses ($10,303), and avoided medical costs of treating employees with influenza/ILI ($2,454). Through sensitivity analyses the model was verified to be robust across a wide range of input variable assumptions. The net monetary benefits were positive across all ranges of input assumptions, but cost savings were most sensitive to the vaccination uptake rate, ILI rate, and presenteeism productivity losses.
Conclusion: This cost-effectiveness analysis suggests that an employer-provided influenza vaccination program is a financially favorable strategy for reducing costs associated with influenza/ILI employee absenteeism, presenteeism, and medical care.