- Norwitz, Errol R;
- McNeill, Gabriel;
- Kalyan, Akshita;
- Rivers, Elizabeth;
- Ahmed, Ebad;
- Meng, Ling;
- Vu, Phikhanh;
- Egbert, Melissa;
- Shapira, Marlene;
- Kobara, Katie;
- Parmar, Sheetal;
- Goel, Shruti;
- Prins, Sarah A;
- Aruh, Israel;
- Persico, Nicola;
- Robins, Jared C;
- Kirshon, Brian;
- Demko, Zachary P;
- Ryan, Allison;
- Billings, Paul R;
- Rabinowitz, Matthew;
- Benn, Peter;
- Martin, Kimberly A;
- Hedriana, Herman L
We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation.