Abstract Background Herpesviruses are a major health concern for numerous organisms, including humans, causing both acute and chronic infections recurrent over an individual's lifespan. Marek's disease virus (MDV) is a highly contagious herpesvirus which causes a neoplastic condition in chicken populations. Several vertebrate-infecting herpesviruses have been shown to exist in an integrated state during latent periods of infection. However the status of MDV during latency has been a topic of debate. Results Here we employed high-resolution multi-color fluorescence in situ hybridization (FISH) to show integration of MDV at the telomeres of chicken chromosomes. Cytogenomic mapping of the chromosomal integrations allowed us to examine the clonal relationships among lymphomas within individuals, whereas analysis of tumors from multiple individuals indicated the potential for chromosomal preferences. Conclusions Our data highlight that substantive genome-level interactions between the virus and host exist, and merit consideration for their potential impact and role in key aspects of herpesvirus pathobiology including infection, latency, cellular transformation, latency-breaks and viral evolution.