The purpose of this work was to investigate sources of bias in magnetic resonance imaging (MRI) liver fat quantification that lead to a dependence of the proton density fat fraction (PDFF) on the number of echoes. This was a retrospective analysis of liver MRI data from 463 subjects. The magnitude signal variation with TE from spoiled gradient echo images was curve fitted to estimate the PDFF using a model that included monoexponential R2 * decay and a multi-peak fat spectrum. Additional corrections for non-exponential decay (Gaussian), bi-exponential decay, degree of fat saturation, water frequency shift and noise bias were introduced. The fitting error was minimized with respect to 463 × 3 = 1389 subject-specific parameters and seven additional parameters associated with these corrections. The effect on PDFF was analyzed, notably the dependence on the number of echoes. The effects on R2 * were also analyzed. The results showed that the inclusion of bias corrections resulted in an increase in the quality of fit (r2 ) in 427 of 463 subjects (i.e. 92.2%) and a reduction in the total fitting error (residual norm) of 43.6%. This was largely a result of the Gaussian decay (57.8% of the reduction), fat spectrum (31.0%) and biexponential decay (8.8%) terms. The inclusion of corrections was also accompanied by a decrease in the dependence of PDFF on the number of echoes. Similar analysis of R2 * showed a decrease in the dependence on the number of echoes. Comparison of PDFF with spectroscopy indicated excellent agreement before and after correction, but the latter exhibited lower bias on a Bland-Altman plot (1.35% versus 0.41%). In conclusion, correction for known and expected biases in PDFF quantification in liver reduces the fitting error, decreases the dependence on the number of echoes and increases the accuracy.