The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed-metal Sc-Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4 C2 @C80 (the most abundant EMF from this synthesis), Sc3 C2 @C80 , isomers of Sc2 C2 @C82 , and the family Sc2 C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3 CH@C80 . The Sc-Ti/CH4 system produces the mixed-metal Sc2 TiC@C2 n (2 n=68, 78, 80) and Sc2 TiC2 @C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition-metal-containing endohedral fullerenes, Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 , and Sc2 TiC2 @Ih -C80 , were characterized by NMR spectroscopy. The structure of Sc2 TiC@Ih -C80 was also determined by single-crystal X-ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2 TiC- and Sc2 TiC2 -containing clusterfullerenes have Ti-localized LUMOs. Encapsulation of the redox-active Ti ion inside the fullerene cage enables analysis of the cluster-cage strain in the endohedral fullerenes through electrochemical measurements.