- Kelly, Sheridon N;
- Russo, Dominic R;
- Ouellette, Erik T;
- Roy, Debashree;
- Swift, Andrew J;
- Boreen, Michael A;
- Smith, Patrick W;
- Moreau, Liane M;
- Arnold, John;
- Minasian, Stefan G
A single-source-precursor approach was developed to synthesize uranium-based materials outside of the typically-studied oxides. This approach allows for shorter reaction times, milder reaction conditions, and control over the chemicals present in synthesis. To this end, the first homoleptic uranium thioamidate complex was synthesized as a precursor for US2 materials. Pyrolysis of the thioamidate results in decomposition via an alkene elimination pathway and formation of γ-US2, which has historically been hard to access without the need for a secondary sulfur source. Despite the oxophilicity of uranium, the method successfully forms US2 without the inclusion of oxygen in the bulk final product. These findings are supported by simultaneous thermal analysis, elemental analysis, powder X-ray diffraction, and uranium L3-edge X-ray absorption fine-structure spectroscopy. This work represents the first example of a single-source precursor approach to target and synthesize actinide materials other than the oxides.