Recent strategy updates by the international particle physics community have confirmed strong interest in a next-generation energy frontier collider after completion of the High-Luminosity LHC program and construction of a e
+
e
− Higgs factory. Both hadron and muon colliders provide a path toward the highest energies, and both require significant and sustained development to achieve technical readiness and optimize the design. For hadron colliders, the energy reach is determined by machine circumference and the strength of the guiding magnetic field. To achieve a collision energy of 100 TeV while limiting the circumference to 100 km, a dipole field of 16 T is required and is within the reach of niobium–tin magnets operating at 1.9 K. Magnets based on high-temperature superconductors may enable a range of alternatives, including a more compact footprint, a reduction of the cooling power, or a further increase of the collision energy to 150 TeV. The feasibility and cost of the magnet system will determine the possible options and optimal configurations. In this article, I review the historical milestones and recent progress in superconducting materials, design concepts, magnet fabrication, and test results and emphasize current developments that have the potential to address the most significant challenges and shape future directions.