- Teh, Boon Eng;
- French, Christopher Todd;
- Chen, Yahua;
- Chen, Isabelle Gek Joo;
- Wu, Ting-Hsiang;
- Sagullo, Enrico;
- Chiou, Pei-Yu;
- Teitell, Michael A;
- Miller, Jeff F;
- Gan, Yunn-Hwen
Background
Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B. pseudomallei has been shown to activate NFκB in HEK293T cells in a Toll-like receptor and MyD88 independent manner that requires T3SS gene cluster 3 (T3SS3 or T3SSBsa). However, the mechanism of how T3SS3 contributes to NFκB activation is unknown.Results
Known T3SS3 effectors are not responsible for NFκB activation. Furthermore, T3SS3-null mutants are able to activate NFκB almost to the same extent as wildtype bacteria at late time points of infection, corresponding to delayed escape into the cytosol. NFκB activation also occurs when bacteria are delivered directly into the cytosol by photothermal nanoblade injection.Conclusions
T3SS3 does not directly activate NFκB but facilitates bacterial escape into the cytosol where the host is able to sense the presence of the pathogen through cytosolic sensors leading to NFκB activation.