We present a counterexample-guided inductive synthesis approach to controller synthesis for cyber-physical systems sub- ject to signal temporal logic (STL) specifications, operating in potentially adversarial nondeterministic environments. We encode STL specifications as mixed integer-linear constraints on the variables of a discrete-time model of the system and environment dynamics, and solve a series of optimization problems to yield a satisfying control sequence. We demonstrate how the scheme can be used in a receding horizon fashion to fulfill properties over unbounded horizons, and present experimental results for reactive controller synthesis for case studies in building climate control and autonomous driving.