This work is focused on understanding how molecular-level structural control can improve charge carrier properties in π-conjugated polymers. Conjugated polymers are characterized by extended conjugation along their backbone, making them intrinsically semiconducting materials that are of interest for a wide variety of flexible, thin-film electronic applications. Polymeric semiconductors possess advantages over inorganic materials such as being lightweight, low-cost and solution processable. However, due the disordered nature of conjugated polymers and their anisotropic transport, charge carrier dynamics can be highly sensitive to structural effects. The first chapter of this dissertation gives an introduction to conjugated polymers and their relevant applications as well as how tuning morphology and doping level can influence their charge carrier properties. The second introduces a technique, known as sequential processing (SqP), that affords control over polymer domain orientation when preparing polymer films as the active layer in optoelectronic devices. We show that conventional processing methods lead to disordered, isotropic polymer networks. By contrast, SqP can be used to preserve the preferred face-on chain orientation seen with some polymer materials, yielding advantages for photovoltaics and other devices via increased vertical hole mobility. Chapter 3 turns to molecular doping of conjugated polymers and studies the effects of a bulky boron cluster dopant used to modify the charge transport properties of conjugated polymers. The design of the dopant is such that it sterically protects core-localized electron density, resulting in shielding of the electron from holes produced on the polymer. This allows the charge carriers to be highly delocalized, as confirmed both spectroscopically and by AC-Hall effect measurements. The dopants allow for high carrier mobilities to be achieved even for non-crystalline polymers. The implication is that the counterion distance is the most important factor needed to produce high carrier mobility in conjugated polymers. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. This allows us to disentangle the effects of energetic offset in doping on the production of free carriers. We find that the redox potential not only affects the generation of free carriers, but also the infiltration of dopants into the polymer films.