We analyze the co-seismic groundwater level responses to four great earthquakes recorded by China's network of groundwater monitoring wells. The large number of operational wells (164 wells for the 2007 Mw 8.5 Sumatra earthquake, 245 wells for the Mw 7.9 Wenchuan earthquake, 228 wells for the Mw 9.0 Tohoku earthquake and 223 wells for 2012 Mw 8.6 Sumatra earthquake) and co-seismic responses provide an opportunity to test hypotheses on mechanisms for co-seismic water level changes. Overall, the co-seismic water level responses are complex over large spatial scales, and there is great variability both in the sign and amplitude of water level responses in the data set. As shown in previous studies, permeability change, rather than static strain, is a more plausible mechanism to explain most of the co-seismic responses. However, we find through tidal analysis of water level responses to solid Earth tide that only one third of these wells that showed a sustained post-seismic response can be explained by earthquake-induced permeability change in aquifers, and these wells had sustained (>30 days) water level changes. Wells that did not show sustained changes are more likely affected by permeability changes only immediately adjacent to the wellbore.