- Huang, Lan;
- Cao, Yang;
- Zhou, Jianfang;
- Qin, Kun;
- Zhu, Wenfei;
- Zhu, Yun;
- Yang, Lei;
- Wang, Dayan;
- Wei, Hong;
- Shu, Yuelong
The I222K, I222R, and I222T substitutions in neuraminidase (NA) have been found in clinically derived 2009 pandemic influenza A/H1N1 viruses with altered susceptibilities to NA inhibitors (NAIs). The effects of these substitutions, together with the most frequently observed resistance-related substitution, H274Y, on viral fitness and resistance mechanisms were further investigated in this study. Reduced sensitivities to oseltamivir were observed in all three mutants (I222K, I222R, and I222T). Furthermore, the I222K and I222T substitutions had a combinational effect of further increasing resistance in the presence of H274Y, which might result from a conformational restriction in the NA binding site. Of note, by using molecular dynamics simulations, R152, the neighbor of T222, was observed to translate to a position closer to T222, resulting in the narrowing of the binding pocket, which otherwise only subtends the residue substitution of H274Y. Moreover, significantly attenuated NA function and viral growth abilities were found in the I222K+H274Y double mutant, while the I222T+H274Y double mutant exhibited slightly delayed growth but had a peak viral titer similar to that of the wild-type virus in MDCK cells. The relative growth advantage of the I222T mutant versus the I222K mutant and the higher frequency of I222T emerging in N1 subtype influenza viruses raise concerns necessitating close monitoring of the dual substitutions I222T and H274Y.