The Great Unconformity marks a major gap in the continental geological record, separating Precambrian basement from Phanerozoic sedimentary rocks. However, the timing, magnitude, spatial heterogeneity, and causes of the erosional event(s) and/or depositional hiatus that lead to its development are unknown. We present field relationships from the 1.07-Ga Pikes Peak batholith in Colorado that constrain the position of Cryogenian and Cambrian paleosurfaces below the Great Unconformity. Tavakaiv sandstone injectites with an age of ≥676 ± 26 Ma cut Pikes Peak granite. Injection of quartzose sediment in bulbous bodies indicates near-surface conditions during emplacement. Fractured, weathered wall rock around Tavakaiv bodies and intensely altered basement fragments within unweathered injectites imply still earlier regolith development. These observations provide evidence that the granite was exhumed and resided at the surface prior to sand injection, likely before the 717-Ma Sturtian glaciation for the climate appropriate for regolith formation over an extensive region of the paleolandscape. The 510-Ma Sawatch sandstone directly overlies Tavakaiv-injected Pikes granite and drapes over core stones in Pikes regolith, consistent with limited erosion between 717 and 510 Ma. Zircon (U-Th)/He dates for basement below the Great Unconformity are 975 to 46 Ma and are consistent with exhumation by 717 Ma. Our results provide evidence that most erosion below the Great Unconformity in Colorado occurred before the first Neoproterozoic Snowball Earth and therefore cannot be a product of glacial erosion. We propose that multiple Great Unconformities developed diachronously and represent regional tectonic features rather than a synchronous global phenomenon.