Animal telemetry is a subject of great potential and scientific interest, but it shows design-dependent problems related to price, flexibility and customization, autonomy, integration of elements, and structural design. The objective of this paper is to provide solutions, from the application of design, to cover the niches that we discovered by reviewing the scientific literature and studying the market. The design process followed to achieve the objective involved a development based on methodologies and basic design approaches focused on the human experience and also that of the animal. We present a modular collar that distributes electronic components in several compartments, connected, and powered by batteries that are wirelessly recharged. Its manufacture is based on 3D printing, something that facilitates immediacy in adaptation and economic affordability. The modularity presented by the proposal allows for adapting the size of the modules to the components they house as well as selecting which specific modules are needed in a project. The homogeneous weight distribution is transferred to the comfort of the animal and allows for a better integration of the elements of the collar. This device substantially improves the current offer of telemetry devices for farming animals, thanks to an animal-centered design process.