- Wing, David;
- Roelands, Bart;
- Wetherell, Julie;
- Nichols, Jeanne;
- Meeusen, Romain;
- Godino, Job;
- Shimony, Joshua;
- Snyder, Abraham;
- Nishino, Tomoyuki;
- Nicol, Ginger;
- Nagels, Guy;
- Eyler, Lisa;
- Lenze, Eric
BACKGROUND: Aging results in changes in resting state functional connectivity within key networks associated with cognition. Cardiovascular function, physical activity, sleep, and body composition may influence these age-related changes in the brain. Better understanding these associations may help clarify mechanisms related to brain aging and guide interventional strategies to reduce these changes. METHODS: In a large (n = 398) sample of healthy community dwelling older adults that were part of a larger interventional trial, we conducted cross sectional analyses of baseline data to examine the relationships between several modifiable behaviors and resting state functional connectivity within networks associated with cognition and emotional regulation. Additionally, maximal aerobic capacity, physical activity, quality of sleep, and body composition were assessed. Associations were explored both through correlation and best vs. worst group comparisons. RESULTS: Greater cardiovascular fitness, but not larger quantity of daily physical activity, was associated with greater functional connectivity within the Default Mode (p = 0.008 r = 0.142) and Salience Networks (p = 0.005, r = 0.152). Better sleep (greater efficiency and fewer nighttime awakenings) was also associated with greater functional connectivity within multiple networks including the Default Mode, Executive Control, and Salience Networks. When the population was split into quartiles, the highest body fat group displayed higher functional connectivity in the Dorsal Attentional Network compared to the lowest body fat percentage (p = 0.011; 95% CI - 0.0172 to - 0.0023). CONCLUSION: These findings confirm and expand on previous work indicating that, in older adults, higher levels of cardiovascular fitness and better sleep quality, but not greater quantity of physical activity, total sleep time, or lower body fat percentage are associated with increased functional connectivity within key resting state networks.