Fungi have successfully established themselves across seemingly every possible niche, substrate, and biome. They are fundamental to biogeochemical cycling, interspecies interactions, food production, and drug bioprocessing, as well as playing less heroic roles as difficult to treat human infections and devastating plant pathogens. Despite community efforts to estimate and catalog fungal diversity, we have only named and described a minute fraction of the fungal world. The identification, characterization, and conservation of fungal diversity is paramount to preserving fungal bioresources, and to understanding and predicting ecosystem cycling and the evolution and epidemiology of fungal disease. Although species and ecosystem conservation are necessarily the foundation of preserving this diversity, there is value in expanding our definition of conservation to include the protection of biological collections, ecological metadata, genetic and genomic data, and the methods and code used for our analyses. These definitions of conservation are interdependent. For example, we need metadata on host specificity and biogeography to understand rarity and set priorities for conservation. To aid in these efforts, we need to draw expertise from diverse fields to tie traditional taxonomic knowledge to data obtained from modern -omics-based approaches, and support the advancement of diverse research perspectives. We also need new tools, including an updated framework for describing and tracking species known only from DNA, and the continued integration of functional predictions to link genetic diversity to functional and ecological diversity. Here, we review the state of fungal diversity research as shaped by recent technological advancements, and how changing viewpoints in taxonomy, -omics, and systematics can be integrated to advance mycological research and preserve fungal biodiversity.