Background
The association between patterns of pigmentation and deafness in the dog has a long-documented history, with reports dating back over one hundred years. Long suspected of having a genetic basis, the search for loci with a pronounced influence in the expression of hearing loss in the dog has yet to be successful. No studies in the dog to date have found a possible influence of a specific colour locus associated with deafness. The present study is intended to evaluate the heritability of deafness in the Jack Russell Terrier (JRT), characterize the mode of inheritance, and evaluate the existence of a sex, coat colour, or coat texture influence on the expression of sensorineural deafness.Results
The estimation of heritability of deafness in the JRT was 0.22 when deafness was considered a binary (normal/deaf) trait and 0.31 when deafness was considered a three-category (normal/unilateral/bilateral deafness). The influence of coat colour in the incidence of JRT deafness was statistically significant, indicating that dogs with more white are more likely to be deaf. The influence of sex or coat texture was not statistically significant in the incidence of JRT deafness. Complex segregation analysis revealed a model of a single locus with a large effect on the binary measure of hearing loss is not supported.Conclusion
This is the first attempt, to our knowledge, to characterize a genetic component responsible for deafness in the JRT. The heritability of deafness in the JRT was found to be 0.22 and 0.31 considering deafness to be a two-category or three-category trait, respectively. There appears to be an influence of coat colour on the expression of deafness. In an attempt to characterize the mode of inheritance of deafness in the JRT, a model of a single locus with a large effect on hearing loss is not supported with this data. Further study is needed to determine if a single locus may be influencing deafness in the JRT. While the absence of a clear mode of inheritance complicates genetic dissection of deafness in the JRT, the assembling of this pedigree provides a tool for eventually defining the genetic bases of this disorder.