- Woodard, Pamela K;
- Liu, Yongjian;
- Pressly, Eric D;
- Luehmann, Hannah P;
- Detering, Lisa;
- Sultan, Deborah E;
- Laforest, Richard;
- McGrath, Alaina J;
- Gropler, Robert J;
- Hawker, Craig J
Purpose
To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles.Methods
To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after (64)Cu radiolabeling. PET imaging was performed on an apolipoprotein E-deficient (ApoE(-/-)) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice.Results
All three (64)Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted (64)Cu-comb. Of the three nanoparticles, the 25% (64)Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE(-/-) mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis.Conclusion
The 25% (64)Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status.