- Stiles, Megan;
- Qi, Hui;
- Sun, Eleanor;
- Tan, Jeremy;
- Porter, Hunter;
- Allegood, Jeremy;
- Chalfant, Charles E;
- Yasumura, Douglas;
- Matthes, Michael T;
- LaVail, Matthew M;
- Mandal, Nawajes A
Retinal degeneration (RD) affects millions of people and is a major cause of ocular impairment and blindness. With a wide range of mutations and conditions leading to degeneration, targeting downstream processes is necessary for developing effective treatments. Ceramide and sphingosine-1-phosphate, a pair of bioactive sphingolipids, are involved in apoptosis and its prevention, respectively. Apoptotic cell death is a potential driver of RD, and in order to understand the mechanism of degeneration and potential treatments, we studied rhodopsin mutant RD model, P23H-1 rats. Investigating this genetic model of human RD allows us to investigate the association of sphingolipid metabolites with the degeneration of the retina in P23H-1 rats and the effects of a specific modulator of sphingolipid metabolism, FTY720. We found that P23H-1 rat retinas had altered sphingolipid profiles that, when treated with FTY720, were rebalanced closer to normal levels. FTY720-treated rats also showed protection from RD compared with their vehicle-treated littermates. Based on these data, we conclude that sphingolipid dysregulation plays a secondary role in retinal cell death, which may be common to many forms of RDs, and that the U.S. Food and Drug Administration-approved drug FTY720 or related compounds that modulate sphingolipid metabolism could potentially delay the cell death.