Background
Cooking is a substantial contributor to air pollutant exposures in many residences. Effective use of kitchen ventilation can mitigate exposure; however, information on its availability, usage, and potential to increase its use across the population has been limited.Objective
This study aimed to obtain nationally representative information on cooking methods, kitchen ventilation availability and usage, and the potential for education to increase effective usage.Methods
An online survey was sent to a representative sample of Canadian homes to collect data on cooking methods, the presence and use of mechanical kitchen ventilation devices, perceived device performance, and willingness to implement mitigation strategies. Responses were weighted to match key demographic factors and analyzed using non-parametric statistics.Results
Among the 4500 respondents, 90% had mechanical ventilation devices over the cooktop (66% of which were vented to the outside), and 30% reported regularly using their devices. Devices were used most often for deep-frying, followed by stir-frying, sautéing or pan-frying, indoor grilling, boiling or steaming. Almost half reported rarely or never using their ventilation devices during baking or oven self-cleaning. Only 10% were fully satisfied with their devices. More frequent use was associated with the device being vented to the outdoors, having more than two speed settings, quiet operation if only one speed, covering over half of the cooktop, and higher perceived effectiveness. After being informed of the benefits of kitchen ventilation, 64% indicated they would consider using their devices more often, preferentially using back burners with ventilation, and/or using higher ventilation device settings when needed.Impact
This study provides population-representative data on the most used cooking methods, kitchen ventilation availability and usage, and influencing factors in Canadian homes. Such data are needed for exposure assessments and evaluating the potential to mitigate cooking-related pollutant exposures via more effective use of kitchen ventilation. The data can be reasonably extrapolated to the United States, given the similarities in residential construction practices and cultural norms between the two countries.